AIR

简介:

==拉普拉斯算子是一种微分算子常在图像处理中强调灰度值的突变,不强调灰度变换缓慢的地方,得到的图层与原图像叠加在一起可以得到锐化的效果==

一个二维图像的拉普拉斯算子可以定义为$$\nabla^{2}f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}$$

所以:
在X方向上存在$$\frac{\partial^2 f}{\partial x}=f(x+1,y)+f(x-1,y)-2f(x,y)$$

在Y方向上存在$$\frac{\partial^2 f}{\partial y}=f(x,y+1)+f(x,y-1)-2f(x,y)$$

可得:
$$\nabla^2f=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)-4f(x,y)$$

扩展至对角线:
$$\nabla^2f=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)+f(x-1,y-1)+f(x-1,y+1)+f(x+1,y-1)+f(x+1,y+1)-8f(x,y)$$

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('Fig0338.tif') # 测试图片
H = img.shape[0]
W = img.shape[1]

pixa = np.zeros((H, W), np.int32)
mImgae = np.zeros((H, W, 3), np.uint8) # 标定(scale)前的滤波图像
smImga = np.zeros((H, W, 3), np.uint8) # 标定(scale)后的滤波图像
pixb = np.zeros((H, W), np.int32)
mImgbe = np.zeros((H, W, 3), np.uint8) # 标定前的滤波图像
smImgb = np.zeros((H, W, 3), np.uint8) # 标定后的滤波图像
imga = np.zeros((H, W, 3), np.uint8) # xy方向模板滤波后图像
imgb = np.zeros((H, W, 3), np.uint8) # 加上对角方向模板滤波后图像

# a用到的算子是 b用到的算子是
# 0 1 0 1 1 1
# 1 -4 1 1 -8 1
# 0 1 0 1 1 1
# 先绘制标定滤波图像
# 标定指的是最小值设置为0,最大值设置为255的进行归一化的结果
for i in range(1, H - 1):
for j in range(1, W - 1):
pixa[i, j] = int(img[i - 1, j, 0]) + img[i + 1, j, 0] + img[i, j - 1, 0] + img[i, j + 1, 0] - 4 * int(
img[i, j, 0])
pixb[i, j] = int(img[i - 1, j - 1, 0]) + img[i - 1, j, 0] + img[i - 1, j + 1, 0] + img[i, j - 1, 0] + img[
i, j + 1, 0] + img[i + 1, j - 1, 0] + img[i + 1, j, 0] + img[i + 1, j + 1, 0] - 8 * int(img[i, j, 0])

maxa = 0
maxb = 0
mina = 255
minb = 255

for i in range(H):
for j in range(W):
# 求出像素最大值和最小值,以利于scale
if pixa[i, j] > maxa:
maxa = pixa[i, j]
if pixa[i, j] < mina:
mina = pixa[i, j]
if pixb[i, j] > maxb:
maxb = pixb[i, j]
if pixb[i, j] < minb:
minb = pixb[i, j]
if pixa[i, j] < 0:
mImgae[i, j] = [0, 0, 0]
else:
mImgae[i, j, 0] = pixa[i, j]
mImgae[i, j, 1] = pixa[i, j]
mImgae[i, j, 2] = pixa[i, j]
if pixb[i, j] < 0:
mImgbe[i, j] = [0, 0, 0]
else:
mImgbe[i, j, 0] = pixb[i, j]
mImgbe[i, j, 1] = pixb[i, j]
mImgbe[i, j, 2] = pixb[i, j]

ka = 0
kb = 0
if maxa > mina:
ka = 255 / (maxa - mina)
if maxb > minb:
kb = 255 / (maxb - minb)

# scale处理
for i in range(H):
for j in range(W):
smImga[i, j, 0] = (pixa[i, j] - mina) * ka
smImga[i, j, 1] = smImga[i, j, 0]
smImga[i, j, 2] = smImga[i, j, 0]
smImgb[i, j, 0] = (pixb[i, j] - minb) * kb
smImgb[i, j, 1] = smImgb[i, j, 0]
smImgb[i, j, 2] = smImgb[i, j, 0]

# 加上拉普拉斯算子
# pixa和pixb里面就是两个算子的结果
# lapa和lapb是原图加算子的结果,用来裁剪或者scale的原始数据
lapa = np.zeros((H, W), np.int32)
lapb = np.zeros((H, W), np.int32)

# 缩放处理
# maxa = 0
# maxb = 0
# mina = 255
# minb = 255

for i in range(H):
for j in range(W):
lapa[i, j] = img[i, j, 0] - pixa[i, j]
lapb[i, j] = img[i, j, 0] - pixb[i, j]
# 裁剪处理
if lapa[i, j] > 255:
lapa[i, j] = 255
if lapa[i, j] < 0:
lapa[i, j] = 0
if lapb[i, j] > 255:
lapb[i, j] = 255
if lapb[i, j] < 0:
lapb[i, j] = 0
# 缩放处理
# if lapa[i, j] > maxa:
# maxa = lapa[i, j]
# if lapa[i, j] < mina:
# mina = lapa[i, j]
# if lapb[i, j] > maxb:
# maxb = lapb[i, j]
# if lapb[i, j] < minb:
# minb = lapb[i, j]

# 缩放处理
# ka = 0
# kb = 0
# if maxa > mina:
# ka = 255 / maxa
# if maxb > minb:
# kb = 255 / maxb

# scale处理
for i in range(H):
for j in range(W):
# 裁剪处理
imga[i, j, 0] = lapa[i, j]
imga[i, j, 1] = lapa[i, j]
imga[i, j, 2] = lapa[i, j]
imgb[i, j, 0] = lapb[i, j]
imgb[i, j, 1] = lapb[i, j]
imgb[i, j, 2] = lapb[i, j]
# 缩放处理
# if lapa[i, j] > 0:
# imga[i, j, 0] = lapa[i, j] * ka
# else:
# imga[i, j, 0] = 0
# imga[i, j, 1] = imga[i, j, 0]
# imga[i, j, 2] = imga[i, j, 0]
# if lapb[i, j] > 0:
# imgb[i, j, 0] = lapb[i, j] * kb
# else:
# imgb[i, j, 0] = 0
# imgb[i, j, 1] = imgb[i, j, 0]
# imgb[i, j, 2] = imgb[i, j, 0]

# 原图
plt.subplot(1, 4, 1)
plt.axis('off')
plt.title('Original image')
plt.imshow(img)

# 图3.37a的模板
plt.subplot(2, 4, 2)
plt.axis('off')
plt.title('Before sale a')
plt.imshow(mImgae)

# scale后图3.37a的模板
plt.subplot(2, 4, 3)
plt.axis('off')
plt.title('After sale a')
plt.imshow(smImga)

# 图3.37a的模板锐化后的图像
plt.subplot(2, 4, 4)
plt.axis('off')
plt.title('Sharpened Image a')
plt.imshow(imga)

# 图3.37b的模板
plt.subplot(2, 4, 6)
plt.axis('off')
plt.title('Before sale b')
plt.imshow(mImgbe)

# scale后图3.37b的模板
plt.subplot(2, 4, 7)
plt.axis('off')
plt.title('After sale b')
plt.imshow(smImgb)

# 图3.37b的模板锐化后的图像
plt.subplot(2, 4, 8)
plt.axis('off')
plt.title('Sharpened Image b')
plt.imshow(imgb)

plt.show()

 Comments


Blog content follows the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License

Use Material X as theme , total visits times .
载入天数...载入时分秒...