AIR

聚类算法是机器学习中涉及对数据进行分组的一种算法。在给定的数据集中,我们可以通过聚类算法将其分成一些不同的组。在理论上,相同的组的数据之间有相同的属性或者是特征,不同组数据之间的属性或者特征相差就会比较大。聚类算法是一种非监督学习算法,并且作为一种常用的数据分析算法在很多领域上得到应用。

分类

1.基于划分

给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。
特点:计算量大。很适合发现中小规模的数据库中小规模的数据库中的球状簇。
算法:K-MEANS算法、K-MEDOIDS算法、CLARANS算法

2.基于层次

对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。
特点:较小的计算开销。然而这种技术不能更正错误的决定。
算法:BIRCH算法、CURE算法、CHAMELEON算法

3.基于密度

只要一个区域中的点的密度大过某个阈值,就把它加到与之相近的聚类中去。
特点:能克服基于距离的算法只能发现“类圆形”的聚类的缺点。
算法:DBSCAN算法、OPTICS算法、DENCLUE算法

4.基于网格

将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。
特点:处理速度很快,通常这是与目标数据库中记录的个数无关的,只与把数据空间分为多少个单元有关。
算法:STING算法、CLIQUE算法、WAVE-CLUSTER算法


 Comments


Blog content follows the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License

Use Material X as theme , total visits times .
载入天数...载入时分秒...