1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
import time import torch import torchvision from torch import nn,optim
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
get_ipython().system('nvidia-smi')
torch.cuda.get_device_name(0)
def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'): """Download the fashion mnist dataset and then load into memory.""" trans = [] if resize: trans.append(torchvision.transforms.Resize(size=resize)) trans.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(trans) mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform) mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=4) test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=4)
return train_iter, test_iter
def evaluate_accuracy(data_iter, net, device=None): if device is None and isinstance(net, nn.Module): device = list(net.parameters())[0].device acc_sum, n = 0.0, 0 with torch.no_grad(): for X, y in data_iter: if isinstance(net, nn.Module): net.eval() acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item() net.train() else: if ('is training' in net.__code__.co_varnames): acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() else: acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() n += y.shape[0] return acc_sum / n
def train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs): net = net.to(device) print("training on ", device) loss = torch.nn.CrossEntropyLoss() for epoch in range(num_epochs): train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time() for X, y in train_iter: X = X.to(device) y = y.to(device) y_hat = net(X) l = loss(y_hat, y) optimizer.zero_grad() l.backward() optimizer.step() train_l_sum += l.cpu().item() train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item() n += y.shape[0] batch_count += 1 test_acc = evaluate_accuracy(test_iter, net) print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec' % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
def vgg_block(num_convs,in_channels,out_channels): blk=[] for i in range(num_convs): if i==0: blk.append(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1)) else: blk.append(nn.Conv2d(out_channels,out_channels,kernel_size=3,padding=1)) blk.append(nn.ReLU()) blk.append(nn.MaxPool2d(kernel_size=2,stride=2)) return nn.Sequential(*blk)
conv_arch=((1,1,64),(1,64,128),(2,128,256),(2,256,512),(2,512,512))
fc_features=512*7*7 fc_hidden_units=4096
class FlattenLayer(nn.Module): def __init__(self): super(FlattenLayer,self).__init__() def forward(self, x): return x.view(x.shape[0],-1)
def vgg(conv_arch,fc_features,fc_hidden_units=4096): net=nn.Sequential() for i , (num_convs,in_channels, out_channels) in enumerate(conv_arch): net.add_module('vgg_block_'+str(i+1),vgg_block(num_convs,in_channels,out_channels)) net.add_module('fc',nn.Sequential(FlattenLayer(), nn.Linear(fc_features,fc_hidden_units), nn.ReLU(), nn.Dropout(0.5), nn.Linear(fc_hidden_units,fc_hidden_units), nn.ReLU(), nn.Dropout(0.5), nn.Linear(fc_hidden_units,10))) return net
net=vgg(conv_arch,fc_features,fc_hidden_units) X=torch.rand(1,1,224,224)
print(net)
for name,blk in net.named_children(): X=blk(X) print(name,'output shape:',X.shape)
batch_size=64 train_iter,test_iter=load_data_fashion_mnist(batch_size,resize=224)
lr,num_epoch=0.001,5 optimizer=torch.optim.Adam(net.parameters(),lr=lr) train(net,train_iter,test_iter,batch_size,optimizer,device,num_epoch)
ratio=8 small_conv_arch=[(1,1,64//ratio),(1,64//ratio,128//ratio),(2,128//ratio,256//ratio), (2,256//ratio,512//ratio),(2,512//ratio,512//ratio)] net=vgg(small_conv_arch,fc_features//ratio,fc_hidden_units//ratio) print(net)
batch_size=64 train_iter,test_iter=load_data_fashion_mnist(batch_size,resize=224)
lr,num_epoch=0.001,5 optimizer=torch.optim.Adam(net.parameters(),lr=lr) train(net,train_iter,test_iter,batch_size,optimizer,device,num_epoch)
|