利用pytorch图像增广
图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。
图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。
简单说就是,通过一些技巧,让图像数据变多;
图像增广基于现有训练数据生成随机图像从而应对过拟合。
1 2 3 4 5 6 7 8 9 10
| import sys from IPython import display import matplotlib.pyplot as plt %matplotlib inline import time import torch from torch import nn, optim from torch.utils.data import Dataset, DataLoader import torchvision from PIL import Image
|
1 2
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device)
|
cuda
1 2 3 4
| def set_figsize(figsize=(3.5, 2.5)): use_svg_display() plt.rcParams['figure.figsize'] = figsize
|
1 2 3
| def use_svg_display(): """Use svg format to display plot in jupyter""" display.set_matplotlib_formats('svg')
|
1 2
| img=Image.open('test.jpg') plt.imshow(img)
|
<matplotlib.image.AxesImage at 0x7fb7abf34d30>

1 2 3 4 5 6 7 8 9
| def show_images(imgs, num_rows, num_cols, scale=2): figsize = (num_cols * scale, num_rows * scale) _, axes = plt.subplots(num_rows, num_cols, figsize=figsize) for i in range(num_rows): for j in range(num_cols): axes[i][j].imshow(imgs[i * num_cols + j]) axes[i][j].axes.get_xaxis().set_visible(False) axes[i][j].axes.get_yaxis().set_visible(False) return axes
|
1 2 3
| def apply(img,aug,num_rows=2,num_cols=4,scale=1.5): Y=[aug(img) for _ in range(num_rows*num_cols)] show_images(Y,num_rows,num_cols,scale)
|
1
| apply(img,torchvision.transforms.RandomHorizontalFlip())
|

1
| apply(img,torchvision.transforms.RandomVerticalFlip())
|

1 2
| shape_aug=torchvision.transforms.RandomResizedCrop(200,scale=(0.1,1)) apply(img,shape_aug)
|

1
| apply(img,torchvision.transforms.ColorJitter(brightness=0.5))
|

1
| apply(img,torchvision.transforms.ColorJitter(hue=0.5))
|

1
| apply(img,torchvision.transforms.ColorJitter(contrast=0.5))
|

1
| apply(img,torchvision.transforms.ColorJitter(saturation=0.5))
|

1 2 3 4 5
| color_aug=torchvision.transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5) apply(img,color_aug)
|

1 2 3
| augs = torchvision.transforms.Compose([ torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug]) apply(img, augs)
|
